ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СП6ГУТ)

АРХАНГЕЛЬСКИЙ КОЛЛЕДЖ ТЕЛЕКОММУНИКАЦИЙ ИМ. Б.Л. РОЗИНГА (ФИЛИАЛ) СП6ГУТ (АКТ (ф) СП6ГУТ)

УТВЕРЖДАЮ И.о. зам. директора по учебной работе

К.А. Семенцына 2025 г.

2025 г.

КОМПЛЕКТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ по учебной дисциплине ОП.03 ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

программы подготовки специалистов среднего звена

по специальности СПО

09.02.13 Интеграция решений с применением технологий искусственного интеллекта

г. Архангельск 2025 Организация-разработчик: АКТ (ф) СПбГУТ.

Разработчик:

С.В. Лукина, преподаватель высшей квалификационной категории АКТ (ф) СПбГУТ.

Рассмотрено и одобрено цикловой комиссией Информационных технологий и математических дисциплин

Протокол № 3 от 12 ноября 2025 г.

Председатель Усклей М.Н. Нехлебаева

КОМПЛЕКТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ

для промежуточной аттестации (дифференцированный зачет)
по учебной дисциплине ОП.03 Теория вероятностей и математическая статистика
для специальности

09.02.13 Интеграция решений с применением технологий искусственного интеллекта

Диффереренцированный зачет является промежуточной формой контроля, подводит итоги освоения дисциплины ОП.03 Теория вероятностей и математическая статистика в 4 семетре.

В результате изучения дисциплин студент должен освоить следующие общие компетенции:

- OK 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- OK 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности.
- OK 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях.
 - ОК 04. Эффективно взаимодействовать и работать в коллективе и команде.
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста.
- ОК 06. Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных российских духовно-нравственных ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения.
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях.
- ОК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.

В результате освоения дисциплины ОП.03 Теория вероятностей и математическая статистика студент должен:

уметь	знать
У.1 - Применять стандартные методы и	3.1 - Элементы комбинаторики;
модели к решению вероятностных и	3.2 - Понятие случайного события,
статистических задач;	классическое определение вероятности,
У.2 - использовать расчетные формулы,	вычисление вероятностей событий с
таблицы, графики при решении статисти-	использованием элементов
ческих задач;	комбинаторики, геометрическую
У.3 - применять современные пакеты	вероятность;
прикладных программ многомерного	3.3 - Алгебру событий, теоремы
статистического анализа.	умножения и сложения вероятностей,
	формулу полной вероятности;
	3.4 - Схему и формулу Бернулли,
	приближенные формулы в схеме
	Бернулли. Формулу (теорему) Байеса;
	3.5 - Понятия случайной величины,
	дискретной случайной величины, ее
	распределение и характеристики,
	непрерывной случайной величины, ее
	распределение и характеристики;
	3.6 - Законы распределения непрерывных
	случайных
	величин;
	3.7 - Центральную предельную теорему,
	выборочный метод математической
	статистики, характеристики выборки;
	3.8 - Понятие вероятности и частоты.

Дифференцированный зачет проводится в виде тестирования. Тест содержит 14 вопросов. Вопросы включают оценочные материалы дисциплин ОП.03. Теория вероятностей и математическая статистика. Из них: 10 вопросов из блока заданий закрытого типа, 4 вопроса из блока заданий открытого типа. Вопросы из блоков заданий выбираются случайным образом. Время выполнения теста — 32 минуты (на каждый вопрос закрытого типа - 2 минуты, открытого типа - 3 минуты).

Шкала оценивания образовательных результатов:

Оценка	Критерии
«отлично»	90-100% правильно выполненных заданий
«хорошо»	70-89:% правильно выполненных заданий
«удовлетворительно»	50-69% правильно выполненных заданий
«неудовлетворительно»	правильно выполненных заданий менее 50%

Блок заданий закрытого типа

1) Прочитайте текст. Выберите правильный ответ.

Как называется событие, которое в результате испытания обязательно произойдет?

- 1. Достоверное;
- 2. Невозможное;

- 3. Случайное;
- 4. Равновозможное.

2) Событие, которое в результате испытания никогда не произойдет, называется:

- 1. Достоверное;
- 2. Невозможное;
- 3. Случайное;
- 4. Противоположное.

3) Если событие А не влияет на вероятность события В, и наоборот, то такие события называются:

- 1. Несовместными;
- 2. Зависимыми:
- 3. Противоположными;
- 4. Независимыми.

4) События, которые не могут произойти одновременно в одном испытании, называются:

- 1. Совместными;
- 2. Несовместными;
- 3. Независимыми;
- 4. Достоверными.

5) Какой из вариантов является классическим определением вероятности?

- 1. P(A) = m / n, где n число всех исходов, m число благоприятных исходов;
- 2. P(A) = 1 P(He A);
- 3. P(A) = пределу частоты события при бесконечном числе испытаний;
- 4. P(A и B) = P(A) * P(B).

6) Формула P(A + B) = P(A) + P(B) - P(AB) справедлива для:

- 1. Независимых событий;
- 2. Несовместных событий;
- 3. Любых двух событий;
- 4. Только противоположных событий.

7) Если события А и В несовместны, то чему равна Р(А + В)?

- 1. P(A) + P(B) P(A)P(B);
- 2. P(A) + P(B);
- 3. P(A) * P(B);
- 4. P(A) / P(B).

8) Чему равна вероятность достоверного события?

- 1.0:
- 2. 0.5;
- 3. 1;
- 4. Зависит от испытания.

9) Чему равна вероятность невозможного события?

- 1.0;
- 2. 0.5;
- 3. 1;
- 4. -1.

10) Сумма вероятностей противоположных событий равна:

- 1.0;
- 2. 0.5;
- 3. 1;
- 4. Не определена.

11) Если P(A) = 0.3, то чему равна вероятность противоположного события $P(\bar{A})$?

- 1. 0.3;
- 2. 0.7;
- 3.0;
- 4. 0.5.

12) Формула P(AB) = P(A) * P(B) справедлива для:

- 1. Зависимых событий;
- 2. Любых событий;
- 3. Несовместных событий;
- 4. Независимых событий.

13) Условная вероятность Р(А|В) – это:

- 1. Вероятность события А при условии, что событие В не произошло;
- 2. Вероятность события В при условии, что событие А произошло;
- 3. Вероятность события А при условии, что событие В произошло;
- 4. Вероятность произведения событий А и В.

14) Формула полной вероятности используется для нахождения вероятности события:

- 1. Которое может произойти только с одним из несовместных событий, образующих полную группу;
- 2. Которое является независимым;
- 3. Которое противоположно достоверному;
- 4. Произведения двух событий.

15) Формула Байеса используется для:

- 1. Вычисления вероятности гипотез после проведения испытания;
- 2. Вычисления вероятности произведения событий;
- 3. Нахождения математического ожидания;
- 4. Проверки статистических гипотез.

16) Схемой испытаний, где каждый раз вероятность события постоянна и не зависит от исходов других испытаний, называется:

- 1. Схема Бернулли;
- 2. Схема Пуассона;
- 3. Схема Лапласа;
- 4. Схема Маркова.

17) Формула Бернулли $P n(k) = C n^k * p^k * q^n(n-k)$ вычисляет вероятность:

- 1. Хотя бы одного успеха в п испытаниях;
- 2. Ровно к успехов в п испытаниях;
- 3. Не менее к успехов в п испытаниях;
- 4. Первого успеха в k-м испытании.

18) Если вероятность события мала, а число испытаний велико, для вычисления вероятности числа успехов часто используют:

- 1. Распределение Бернулли;
- 2. Распределение Пуассона;
- 3. Нормальное распределение;
- 4. Равномерное распределение.

19) Локальная теорема Муавра-Лапласа используется для приближенного вычисления вероятности в:

- 1. Схеме Пуассона;
- 2. Схеме Бернулли при малых n;
- 3. Схеме Бернулли при больших n;
- 4. Для любых распределений.

20) Интегральная теорема Муавра-Лапласа используется для приближенного вычисления вероятности того, что число успехов в п испытаниях:

- 1. Равно k;
- 2. Попадет в интервал от k1 до k2;
- 3. Будет меньше k;
- 4. Будет больше k.

21) Случайная величина – это:

- 1. Величина, которая принимает только целые значения;
- 2. Величина, которая в результате испытания примет одно и только одно возможное значение;
- 3. Постоянная величина;
- 4. Величина, которая всегда равна математическому ожиданию.

22) Дискретная случайная величина – это величина, которая:

- 1. Может принимать любые значения на отрезке;
- 2. Может принимать только конечное или счетное множество значений;
- 3. Имеет нормальное распределение;
- 4. Не может быть отрицательной.

23) Непрерывная случайная величина – это величина, которая:

- 1. Может принимать только целые значения;
- 2. Может принимать любые значения из некоторого промежутка;
- 3. Всегда положительна;
- 4. Имеет постоянную дисперсию.

24) Закон распределения дискретной случайной величины задается:

- 1. Функцией распределения;
- 2. Рядом распределения;
- 3. Плотностью распределения;
- 4. Математическим ожиданием.

25) Функция распределения F(x) случайной величины X – это вероятность того, что:

- 1. Х примет конкретное значение х;
- 2. X < x;
- 3. $X \le x$;
- 4. X > x.

26) Плотность распределения непрерывной случайной величины – это:

- 1. Вероятность P(X = x);
- 2. Производная функции распределения f(x) = F'(x);
- 3. Интеграл от функции распределения;
- 4. Математическое ожидание.

27) Вероятность попадания непрерывной случайной величины в интервал [a, b] вычисляется как:

- 1. F(b) F(a);
- 2. f(b) f(a);
- 3. F(a) F(b);
- 4. P(X=a) + P(X=b).

28) Математическое ожидание – это:

- 1. Мера разброса случайной величины;
- 2. Среднее взвешенное значение случайной величины;
- 3. Наиболее вероятное значение случайной величины;
- 4. Разница между максимальным и минимальным значением.

29) Дисперсия случайной величины – это:

- 1. Среднее значение;
- 2. Математическое ожидание квадрата отклонения от среднего;
- 3. Квадрат математического ожидания;
- 4. Максимальное значение.

30) Среднее квадратическое отклонение – это:

- 1. Квадрат дисперсии;
- 2. Корень из дисперсии;
- 3. Математическое ожидание;
- 4. Мода распределения.

31) Дисперсия характеризует:

- 1. Среднее значение случайной величины;
- 2. Разброс случайной величины вокруг среднего значения;
- 3. Асимметрию распределения;
- 4. Вероятность наиболее частого значения.

32) Распределение дискретной случайной величины, где вероятность успеха в каждом испытании постоянна, называется:

- 1. Пуассоновским;
- 2. Биномиальным;
- 3. Геометрическим;
- 4. Нормальным.

33) Распределение, описывающее число "успехов" в последовательности испытаний до первого "успеха", называется:

- 1. Биномиальным;
- 2. Геометрическим;
- 3. Пуассоновским;
- 4. Показательным.

34) Распределение, часто используемое для моделирования редких событий, называется:

- 1. Биномиальным;
- 2. Геометрическим;
- 3. Пуассоновским;
- 4. Равномерным.

35) Непрерывное распределение, где все значения на отрезке равновероятны, называется:

- 1. Нормальным;
- 2. Показательным;
- 3. Равномерным;
- 4. Биномиальным.

36) Нормальное распределение также называется:

- 1. Распределением Пуассона;
- 2. Распределением Гаусса;
- 3. Распределением Бернулли;
- 4. Распределением Лапласа.

37) Функция плотности нормального распределения имеет вид:

- 1. Прямая линия;
- 2. Ступенчатая функция;
- 3. Колоколообразная кривая (Гауссова кривая);
- 4. Гипербола.

38) Параметрами нормального распределения N(m, σ) являются:

- 1. Математическое ожидание m и дисперсия σ^2 ;
- 2. Мода и медиана;
- 3. Дисперсия и асимметрия;
- 4. Размах и минимум.

39) Кривая стандартного нормального распределения имеет параметры:

- 1. m=0, σ =1;
- 2. m=1, σ =0;
- 3. m=0, σ =0;
- 4. m=1, σ =1.

40) Правило "трех сигм" для нормального распределения утверждает, что вероятность отклонения от мат. ожидания на величину более 3σ равна примерно:

- 1. 0.1;
- 2. 0.05;
- 3. 0.003;
- 4. 0.5.

41) Показательное распределение часто используется для моделирования:

- 1. Роста населения;
- 2. Времени безотказной работы устройства;
- 3. Результатов измерений;
- 4. Количества успехов в испытаниях.

42) Выборка – это:

- 1. Множество всех возможных объектов;
- 2. Часть генеральной совокупности, отобранная для изучения;
- 3. Теоретическое распределение;
- 4. Результат одного измерения.

43) Генеральная совокупность – это:

- 1. Выборочные данные;
- 2. Множество всех объектов, подлежащих изучению;
- 3. Статистический ряд;
- 4. Группированные данные.

44) Вариационный ряд – это:

- 1. Выборка, записанная в порядке возрастания;
- 2. Частота попадания в интервал;
- 3. Относительная частота;
- 4. Эмпирическая функция распределения.

45) Полигон частот – это:

- 1. Ступенчатая фигура;
- 2. Ломаная линия, соединяющая точки (х і, п і);
- 3. Столбчатая диаграмма;
- 4. Круговая диаграмма.

46) Гистограмма строится для:

- 1. Дискретного вариационного ряда;
- 2. Интервального вариационного ряда;
- 3. Качественных данных;
- 4. Функции распределения.

47) Эмпирическая функция распределения F n(x) – это:

- 1. Теоретическая вероятность;
- 2. Относительная частота события X < x;
- 3. Плотность вероятности;
- 4. Абсолютная частота.

48) Выборочное среднее – это оценка для:

- 1. Дисперсии генеральной совокупности;
- 2. Математического ожидания генеральной совокупности;
- 3. Моды генеральной совокупности;
- 4. Медианы генеральной совокупности.

49) Выборочная дисперсия s^2 – это оценка для:

- 1. Математического ожидания;
- 2. Дисперсии генеральной совокупности;
- 3. Среднего квадратического отклонения;
- 4. Моды.

50) Если оценка при увеличении объема выборки стремится к оцениваемому параметру, то она называется:

- 1. Состоятельной;
- 2. Несмещенной;
- 3. Эффективной;
- 4. Надежной.

51) Если математическое ожидание оценки равно оцениваемому параметру, то оценка называется:

- 1. Состоятельной;
- 2. Несмещенной;
- 3. Эффективной;
- 4. Надежной.

52) Наиболее эффективной оценкой считается та, которая имеет:

- 1. Наибольшее математическое ожидание;
- 2. Наименьшую дисперсию;
- 3. Наибольшую дисперсию;
- 4. Наименьшее смешение.

53) Центральная предельная теорема утверждает, что сумма большого числа случайных величин:

- 1. Всегда распределена по Пуассону;
- 2. Имеет распределение, близкое к нормальному;
- 3. Всегда распределена равномерно;
- 4. Стремится к нулю.

54) Доверительным интервалом для параметра называется:

- 1. Точечная оценка параметра;
- 2. Интервал, который с заданной вероятностью накрывает неизвестное значение параметра;
- 3. Размах вариации;
- 4. Среднее значение выборки.

55) Уровень значимости – это:

- 1. Доверительная вероятность;
- 2. Вероятность ошибки первого рода (отвергнуть верную гипотезу);
- 3. Точечная оценка;
- 4. Мощность критерия.

56) Статистической гипотезой называется:

- 1. Достоверный факт;
- 2. Предположение о свойствах генеральной совокупности;
- 3. Результат вычисления;
- 4. Эмпирическая функция распределения.

57) Нулевая гипотеза (Н0) – это обычно гипотеза о:

- 1. Наличии эффекта;
- 2. Отсутствии эффекта, случайности отклонений;
- 3. Справедливости альтернативной гипотезы;
- 4. Ненулевом значении параметра.

58) Критерий согласия Пирсона (χ^2) используется для проверки гипотезы о:

- 1. Равенстве математических ожиданий;
- 2. Законе распределения генеральной совокупности;
- 3. Равенстве дисперсий;
- 4. Независимости двух событий.

59) Если рассчитанное значение критерия попадает в критическую область, то:

- 1. Нулевую гипотезу принимают;
- 2. Нулевую гипотезу отвергают;
- 3. Увеличивают уровень значимости;
- 4. Делают вывод о несмещенности оценки.

60) Коэффициент корреляции Пирсона характеризует:

- 1. Причинно-следственную связь;
- 2. Тесноту линейной связи между двумя случайными величинами;
- 3. Асимметрию распределения;
- 4. Закон распределения.

Блок заданий открытого типа

1) Прочитайте текст. Дайте краткий ответ.

Что характеризует математическое ожидание случайной величины?

2) Прочитайте текст. Дайте краткий ответ.

Что характеризует дисперсия случайной величины?

3) Прочитайте текст. Дайте краткий ответ.

Как называется событие, состоящее в том, что произойдет хотя бы одно из двух событий А или В?

4) Прочитайте текст. Дайте краткий ответ.

Как называется вероятность события А при условии, что событие В уже произошло?

5) Прочитайте текст. Дайте краткий ответ.

Сформулируйте классическое определение вероятности события.

6) Прочитайте текст. Дайте краткий ответ.

Для каких событий справедлива формула $P(A \cup B) = P(A) + P(B)$?

7) Прочитайте текст. Дайте краткий ответ.

Чему равна сумма вероятностей противоположных событий?

8) Прочитайте текст. Дайте краткий ответ.

Как называется формула, позволяющая вычислить вероятность события, которое может произойти вместе с одним из нескольких несовместных событий?

9) Прочитайте текст. Дайте краткий ответ.

Как называется схема независимых испытаний с двумя исходами?

10) Прочитайте текст. Дайте краткий ответ.

Что вычисляет формула Бернулли $P_n(k) = C_n^k * p^k * q^{n-k}$?

11) Прочитайте текст. Дайте краткий ответ.

Как называется распределение, описывающее число "успехов" в серии испытаний Бернулли?

12) Прочитайте текст. Дайте краткий ответ.

Как называется распределение, используемое для моделирования редких событий?

13) Прочитайте текст. Дайте краткий ответ.

Как называется функция, которая полностью задает закон распределения дискретной случайной величины?

14) Прочитайте текст. Дайте краткий ответ.

Что определяет функция распределения F(x) случайной величины X?

15) Прочитайте текст. Дайте краткий ответ.

Как связаны функция распределения F(x) и плотность распределения f(x) для непрерывной случайной величины?

16) Прочитайте текст. Дайте краткий ответ.

Как вычисляется вероятность попадания непрерывной случайной величины в заданный интервал [a, b]?

17) Прочитайте текст. Дайте краткий ответ.

Каковы параметры нормального распределения N(m, σ)?

18) Прочитайте текст. Дайте краткий ответ.

Как называется нормальное распределение с параметрами m=0 и $\sigma=1$?

19) Прочитайте текст. Дайте краткий ответ.

В чем смысл правила "трех сигм" для нормально распределенной случайной величины?

20) Прочитайте текст. Дайте краткий ответ.

Что характеризует ковариация двух случайных величин?

21) Прочитайте текст. Дайте краткий ответ.

Что показывает коэффициент корреляции Пирсона?

22) Прочитайте текст. Дайте краткий ответ.

Чем выборка отличается от генеральной совокупности?

23) Прочитайте текст. Дайте краткий ответ.

Что такое вариационный ряд?

24) Прочитайте текст. Дайте краткий ответ.

Как называется ломаная линия, соединяющая точки с координатами (x_i, n_i) или (x_i, w_i) ?

25) Прочитайте текст. Дайте краткий ответ.

Для каких данных строится гистограмма?

26) Прочитайте текст. Дайте краткий ответ.

Что такое эмпирическая функция распределения?

27) Прочитайте текст. Дайте краткий ответ.

Какая точечная оценка является несмещенной для математического ожидания генеральной совокупности?

28) Прочитайте текст. Дайте краткий ответ.

Какая точечная оценка является несмещенной для дисперсии генеральной совокупности?

29) Прочитайте текст. Дайте краткий ответ.

Что означает свойство состоятельности точечной оценки?

30) Прочитайте текст. Дайте краткий ответ.

О чем гласит центральная предельная теорема?

31) Прочитайте текст. Дайте краткий ответ.

Что такое доверительный интервал для параметра?

32) Прочитайте текст. Дайте краткий ответ.

Что такое уровень значимости статистического критерия?

33) Прочитайте текст. Дайте краткий ответ.

Как называется гипотеза, которую проверяют на значимость?

34) Прочитайте текст. Дайте краткий ответ.

Как называется ошибка, когда отвергают верную нулевую гипотезу?

35) Прочитайте текст. Дайте краткий ответ.

Как называется критерий, используемый для проверки гипотезы о законе распределения генеральной совокупности?

36) Прочитайте текст. Дайте краткий ответ.

Если p-value меньше уровня значимости α, какой вывод делают о нулевой гипотезе?

37) Прочитайте текст. Дайте краткий ответ.

Как называется мера эффективности несмещенной оценки?

38) Прочитайте текст. Дайте краткий ответ.

Какое распределение имеет выборочное среднее, если генеральная совокупность распределена нормально?

39) Прочитайте текст. Дайте краткий ответ.

Как называется оценка, которая имеет наименьшую дисперсию среди всех возможных несмещенных оценок?

40) Прочитайте текст. Дайте краткий ответ.

Что понимают под мощностью статистического критерия?