# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

АРХАНГЕЛЬСКИЙ КОЛЛЕДЖ ТЕЛЕКОММУНИКАЦИЙ ИМ. Б. Л. РОЗИНГА (ФИЛИАЛ) СПбГУТ (АКТ (ф) СПбГУТ)

УТВЕРЖДАЮ
И.о. зам. директора по учебной работе

\_\_\_\_\_\_ К.А. Семенцына
\_\_\_\_\_\_ 2025 г.

#### КОМПЛЕКТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ

по учебному предмету

ОУП.06 ФИЗИКА

программы подготовки специалистов среднего звена

по специальности СПО

09.02.13 Интеграция решений с применением технологий искусственного интеллекта

Организация-разработчик: АКТ (ф) СПбГУТ

Разработчик:

Н.В. Якуня, преподаватель высшей квалификационной категории АКТ (ф) СПбГУТ.

Рассмотрено и одобрено цикловой комиссией Общеобразовательных дисциплин

Протокол № <u>3</u> от <u>12.11</u> 2025г. Председатель <u>И.</u>Л. Самоукова

## СОДЕРЖАНИЕ

| 1 | ПАСПОРТ<br>МАТЕРИАЛ | КОМПЛЕКТА<br>ОВ | ОЦЕНОЧНЫХ | 4  |
|---|---------------------|-----------------|-----------|----|
| 2 | ОЦЕНОЧНЬ            | ІЕ МАТЕРИАЛЫ    |           | 12 |

# 1 ПАСПОРТ КОМПЛЕКТА ОЦЕНОЧНЫХ МАТЕРИАЛОВ ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА ОУП.06 ФИЗИКА

#### 1.1 Область применения

Комплект оценочных материалов предназначен для контроля и оценки результатов освоения общеобразовательного учебного предмета программы подготовки специалистов среднего звена по специальности СПО 09.02.13 Интеграция решений с применением технологий искусственного интеллекта.

Фонд оценочных средств включает оценочные материалы для проведения промежуточной аттестации.

# 1.2 Планируемые результаты освоения общеобразовательного предмета в соответствии с ФГОС СПО и на основе ФГОС СОО

Общеобразовательный учебный предмет ОУП.06 Физика, в соответствии с учебным планом, изучается на первом курсе в первом и во втором семестрах. Во втором семестре проводится промежуточная аттестация в форме экзамена.

Освоение содержания ОУП.06 Физика обеспечивает достижение обучающимися следующих личностных (ЛР), метапредметных (МР) и предметных результатов базового уровня (ПРб):

| Планируемые результаты освоения предмета |                                      |  |  |  |  |  |  |  |
|------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| Личностные и метапредметные              | Предметные (дисциплинарные)          |  |  |  |  |  |  |  |
|                                          |                                      |  |  |  |  |  |  |  |
| Личностные результаты должны             | ПРб 1. Сформированность              |  |  |  |  |  |  |  |
| отражать в части трудового               | представлений о роли                 |  |  |  |  |  |  |  |
| воспитания:                              | и месте физики и астрономии в        |  |  |  |  |  |  |  |
| - готовность к труду, осознание          | современной научной картине мира, о  |  |  |  |  |  |  |  |
| ценности мастерства, трудолюбие;         | системообразующей роли физики в      |  |  |  |  |  |  |  |
| - готовность к активной                  | развитии естественных наук, техники  |  |  |  |  |  |  |  |
| деятельности технологической и           | и современных технологий, о вкладе   |  |  |  |  |  |  |  |
| социальной направленности,               | российских                           |  |  |  |  |  |  |  |
| способность инициировать,                | и зарубежных ученых-физиков в        |  |  |  |  |  |  |  |
| планировать и самостоятельно             | развитие науки; понимание физической |  |  |  |  |  |  |  |
| выполнять такую деятельность;            | сущности наблюдаемых явлений         |  |  |  |  |  |  |  |
| - интерес к различным сферам             | микромира, макромира и мегамира;     |  |  |  |  |  |  |  |
| профессиональной деятельности,           | понимание роли астрономии в          |  |  |  |  |  |  |  |
| - готовность и способность к             | практической деятельности человека и |  |  |  |  |  |  |  |
| образованию и самообразованию на         | дальнейшем научно-техническом        |  |  |  |  |  |  |  |
| протяжении всей жизни.                   | развитии, роли физики                |  |  |  |  |  |  |  |

Метапредметные результаты должны отражать:

Овладение универсальными учебными познавательными действиями:

- а) базовые логические действия: формулировать самостоятельно проблему, актуализировать всесторонне; рассматривать ee устанавливать существенный основания признак ДЛЯ сравнения, классификации И обобщения; определять цели деятельности, задавать параметры и критерии их достижения; выявлять закономерности и противоречия в рассматриваемых явлениях; вносить коррективы деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности; развивать креативное мышление при решении жизненных проблем;
- б)базовые исследовательские действия:
- владеть навыками учебноисследовательской и проектной деятельности, навыками разрешения проблем;
- выявлять причинно-следственные и актуализировать задачу, выдвигать гипотезу ee решения, находить аргументы ДЛЯ доказательства своих утверждений, задавать параметры И критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
- уметь переносить знания в познавательную и практическую части жизнедеятельности;
- уметь интегрировать знания из

в формировании кругозора и функциональной грамотности человека для решения практических задач;

ПРб 2. Сформированность умений распознавать физические явления (процессы) и объяснять их на основе изученных законов: равномерное прямолинейное равноускоренное падение движение, свободное тел, движение окружности, инерция, колебательное взаимодействие тел, волновое движение, резонанс, движение; диффузия, броуновское строение жидкостей движение, твердых тел, изменение объема тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, кристаллизация, плавление, кипение, воздуха, связь средней влажность энергии теплового кинетической молекул c абсолютной движения температурой, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах; электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник током движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция поляризация света, дисперсия света; фотоэлектрический эффект, световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

ПРб 3. Владение основополагающими физическими понятиями и величинами, характеризующими физические процессы (связанными с механическим движением, взаимодействием тел, механическими колебаниями и волнами;

разных предметных областей;

- выдвигать новые идеи, предлагать оригинальные подходы и решения;
- проявлять способность их использования в познавательной и социальной практике;
- -проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- формулировать ставить И собственные задачи образовательной деятельности И ситуациях; жизненных выявлять причинно-следственные связи и для доказательства своих утверждений, параметры критерии задавать актуализировать задачу, решения выдвигать гипотезу ee решения, находить аргументы;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях; давать оценку новым ситуациям, оценивать приобретенный опыт;
- разрабатывать план решения проблемы с учетом анализа имеющихся материальных и нематериальных ресурсов; ставить проблемы и задачи, допускающие альтернативные решения

атомно-молекулярным строением вещества, тепловыми процессами; электрическим и магнитным полями, электрическим током, электромагнитными колебаниями волнами; оптическими явлениями; строением квантовыми явлениями, атома И атомного ядра, радиоактивностью); владение основополагающими астрономическими понятиями, позволяющими характеризовать процессы, происходящие на звездах, в звездных системах, в межгалактической среде; небесных движение тел. эволюшию звезд и Вселенной;

# ПРб 4. Владение закономерностями, законами

теориями (закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправности инерциальных систем молекулярно-кинетическую отсчета; строения вещества, газовые теорию законы, первый закон термодинамики; сохранения электрического закон заряда, закон Кулона, закон Ома для участка цепи, закон Ома для полной электрической цепи, закон Джоуля -Ленца, закон электромагнитной индукции, закон сохранения энергии, закон прямолинейного распространения света, закон отражения света, закон преломления света; закон сохранения энергии, закон сохранения импульса, сохранения электрического закон заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада); уверенное использование законов И закономерностей при анализе физических явлений и процессов;

ПРб 6. Владение основными методами научного познания, используемыми в физике: проводить прямые и косвенные измерения физических величин, выбирая оптимальный способ измерения используя известные методы погрешностей оценки измерений, проводить исследование зависимостей физических величин использованием прямых измерений, полученные объяснять результаты, используя физические теории, законы и понятия, и делать выводы; соблюдать правила безопасного труда при проведении исследований рамках В учебного эксперимента И учебноисследовательской деятельности цифровых использованием устройств измерительных лабораторного оборудования; сформированность представлений методах получения научных астрономических знаний;

ПРб Сформированность 7. умения расчетные решать задачи c явно физической заданной моделью. физические используя законы принципы; на основе анализа условия задачи выбирать физическую модель, выделять физические величины формулы, необходимые для ее решения, проводить расчеты оценивать И реальность полученного значения физической величины; решать качественные задачи, выстраивая логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления

Личностные результаты должны отражать в части ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития науки и ПРб 5. Умение учитывать границы изученных применения физических моделей: материальная точка, инерциальная система отсчета, идеальный газ; модели строения газов, жидкостей и твердых тел,

общественной практики, основанного на диалоге культур, способствующего осознанию своего места в поликультурном мире;

- совершенствование языковой и читательской культуры как средства взаимодействия между людьми и познания мира;

Метапредметные результаты должны отражать: Овладение универсальными учебными познавательными действиями:

- в) работа с информацией:
- владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- создавать тексты в различных форматах с учетом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации;
- использовать средства информационных И технологий коммуникационных решении когнитивных, коммуникативных организационных c задач соблюдением требований эргономики, техники безопасности, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- владеть навыками распознавания и защиты информации, информационной безопасности личности

электрический заряд, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

ПРб 9. Сформированность собственной позиции по отношению к физической получаемой из разных информации, источников, умений использовать цифровые технологии ДЛЯ поиска, структурирования, интерпретации представления учебной научноинформации; популярной развитие критического умений анализа получаемой информации

Личностные результаты должны отражать в части духовнонравственного воспитания:

- способность оценивать ситуацию и принимать осознанные решения,

-владеть основными методами научного познания, используемыми в физике: проводить прямые и косвенные измерения физических

ориентируясь на моральнонравственные нормы и ценности; -осознание личного вклад построение устойчивого будущего; Метапредметные результаты должны Овладение отражать: регулятивными универсальными действиями:

- а) самоорганизация:
- самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- самостоятельно составлять план решения проблемы с учетом имеющихся ресурсов, собственных возможностей и предпочтений;
- давать оценку новым ситуациям; -способствовать формированию и проявлению широкой эрудиции в разных областях знаний, постоянно повышать свой образовательный и культурный уровень;
- б) самоконтроль: использовать приемы рефлексии для оценки ситуации, выбора верного решения;
- уметь оценивать риски и своевременно принимать решения по их снижению

выбирая величин, оптимальный способ измерения И используя известные оценки методы погрешностей измерений, проводить зависимостей исследование физических величин использованием прямых измерений, объяснять полученные результаты, используя физические теории, законы и понятия, и делать соблюдать выводы; правила безопасного труда при проведении исследований в рамках учебного эксперимента учебно-И исследовательской деятельности использованием цифровых измерительных устройств оборудования; лабораторного сформированность представлений о методах получения научных астрономических знаний.

Личностные результаты должны отражать в части ценности научного познания:

-овладевание навыками учебноисследовательской, проектной и социальной деятельности;

Метапредметные результаты должны отражать: Овладение универсальными коммуникативными действиями:

б) совместная деятельность:

ПРб 10. Овладение умениями работать в группе

с выполнением различных социальных ролей, планировать работу группы, рационально распределять деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы

- понимать и использовать преимущества командной и индивидуальной работы;
- выбирать тематику и методы совместных действий с учетом общих интересов и возможностей каждого члена коллектива;
- совместной принимать цели деятельности, организовывать и координировать действия по ее достижению: составлять действий, распределять роли учетом мнений участников, обсуждать результаты совместной работы;
- -оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;
- -предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости; координировать работу условиях В выполнять виртуального реального, комбинированного взаимодействия; -осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Овладение универсальными регулятивными действиями:

- г) принятие себя и других людей:
- принимать мотивы и аргументы других людей при анализе результатов деятельности

Личностные результаты должны отражать в части эстетического воспитания:

- эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, труда и общественных отношений; ПРб 1. Сформированность представлений о роли и месте физики и астрономии в современной научной картине мира, о системообразующей роли физики в развитии естественных наук, техники и современных

в области патриотического воспитания проявлять:

-ценностное отношение к государственным символам, историческому и природному наследию, памятникам, традициям народов России, достижениям России в науке, искусстве, спорте, технологиях и труде;

Метапредметные результаты должны отражать: Овладение универсальными коммуникативными действиями: а)общение:

- осуществлять коммуникации во всех сферах жизни;
- развернуто и логично излагать свою точку зрения с использованием языковых средств

Личностные результаты должны отражать в части экологического воспитания:

- сформированность экологической культуры, понимание влияния социально-экономических процессов на состояние природной и социальной среды, осознание глобального характера экологических проблем;
- планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества; активное неприятие действий, приносящих вред окружающей среде

технологий, о вкладе российских и зарубежных ученых-физиков развитие науки; понимание физической сущности наблюдаемых явлений микромира, макромира и мегамира; понимание роли астрономии в практической деятельности человека дальнейшем научно-техническом развитии, роли физики кругозора формировании И функциональной грамотности человека ДЛЯ решения практических задач

ПРб 8. Сформированность полученные применять знания для объяснения условий протекания физических явлений природе и для принятия практических решений в повседневной жизни для обеспечения безопасности обращении при бытовыми приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения окружающей В среде; понимание необходимости применения достижений физики технологий ДЛЯ рационального природопользования.

#### 2 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

#### 2.1 Задания для проведения экзамена

Форма экзамена: письменный

#### Условия выполнения задания:

Место проведения экзамена: учебная аудитория

Максимальное время проведения экзамена: 1 час 30 мин

#### Критерии оценивания заданий:

Задания 1-10 оцениваются по 1 баллу, задания 11 и 12 — по 3 балла, максимально — 16 баллов.

**«5» -** 94%-100% правильных ответов (15-16 баллов)

**«4» - 70%-93%** правильных ответов (11-14 баллов)

**«3» -** 51%-69% правильных ответов (8-10 баллов)

**«2» -** менее 51% правильных ответов (0-7 баллов)

#### Вопросы к экзамену:

- 1 Механическое движение и его характеристики. Масса. Импульс тела. Закон сохранения импульса.
- 2 Силы в механике. Законы Ньютона. Закон Всемирного тяготения. Сила тяжести и вес тела.
- 3 Работа силы. Закон сохранения энергии в механике. Механическая мошность.
- 4 Основные положения молекулярно-кинетической теории и их опытное обоснование. Газовые законы.
- 5 Внутренняя энергия и её изменение. Первое и второе начала термодинамики. Фазовые переходы.
- 6 Тепловые двигатели. КПД теплового двигателя.
- 7 Электризация тел. Электрический заряд. Закон сохранения электрического заряда.
- 8 Взаимодействие точечных зарядов. Закон Кулона. Относительная диэлектрическая проницаемость среды.

- 9 Понятие об электростатическом поле. Его материальность и основные характеристики (напряжённость и потенциал).
- 10 Электрическое поле. Напряжённость электрического поля. Изображение электрических полей с помощью силовых линий.
- 11 Работа по перемещению заряда в электрическом поле. Потенциал. Разность потенциалов. Единицы их измерения.
- 12 Электроёмкость проводника, единицы электроёмкости.
- 13 Конденсатор, зарядка конденсатора. Энергия электрического поля заряженного конденсатора.
- 14 Соединение конденсаторов в батарею (последовательное и параллельное соединение; определение общих заряда, ёмкости и напряжения).
- 15 Электрический ток. Закон Ома для участка цепи. Сопротивление проводника, его зависимость от рода вещества, геометрических размеров и температуры.
- 16 Законы последовательного и параллельного соединения резисторов.
- 17 Закон Ома для полной цепи. Электродвижущая сила (ЭДС) источника тока.
- 18 Работа и мощность в цепи постоянного тока. Электродвигатель.
- 19 Полупроводники. Использование в технике зависимости сопротивления полупроводников от освещённости и температуры (терморезисторы и фоторезисторы). Собственная и примесная проводимость.
- 20 p-n переход, его основное свойство. Полупроводниковый диод, его использование для выпрямления переменного тока. Условное обозначение на схемах.
- 21 Полупроводниковый триод (транзистор). Его устройство и работа.
- 22 Магнитное поле тока. Магнитная индукция.
- 23 Магнитное поле прямого тока, кругового тока и катушки с током (формулы для определения магнитной индукции и графическое изображение полей.)
- 24 Действие магнитного поля на проводник с током. Закон Ампера. Правило левой руки.

- 25 Движение заряженной частицы в магнитном поле. Сила Лоренца. Правило левой руки.
- 26 Магнитный поток. Способы изменения магнитного потока. Работа магнитных сил.
- 27 Явление электромагнитной индукции. Опыты Фарадея. Закон электромагнитной индукции. Правило Ленца.
- 28 Возникновение ЭДС индукции в движущихся проводниках.
- 29 Самоиндукция. Индуктивность. ЭДС самоиндукции.
- 30 Колебательное движение и его характеристики (амплитуда, период, частота, циклическая частота.) Гармонические колебания. Свободные и вынужденные колебания. Резонанс.
- 31 Гармонические колебания математического и пружинного маятников (амплитуда, период, частота, циклическая частота; превращение энергии при колебаниях).
- 32 Переменный ток как вынужденное электромагнитное колебание. Его получение. Мгновенное, максимальное и действующее значение силы тока, напряжения и ЭДС.
- 33 Активное, индуктивное, ёмкостное и полное сопротивления в цепи переменного тока.
- 34 Трансформатор. Его устройство, принцип работы, применение и обозначение на схемах.
- 35 Колебательный контур. Свободные электромагнитные колебания в контуре, законы колебания напряжения, заряда и силы тока в нём. Превращение энергии в колебательном контуре.
- 36 Электромагнитное поле (теория Максвелла, постулаты Максвелла.) Свойства электромагнитных волн.
- 37 Открытый колебательный контур. Опыты Герца. Получение электромагнитных волн, их скорость. Шкала электромагнитных волн.
- 38 Принципы радиосвязи. Модуляция.
- 39 Детектирование. Простейший детекторный приёмник.

- 40 Волновые свойства света. Отражение и преломление света, их законы. Полное внутреннее отражение. Оптоволокно.
- 41 Линзы. Построение изображения в линзах. Оптические приборы.
- 42 Интерференция механических волн, интерференция света. Интерференция в природе и технике.
- 43 Дифракция волн. Дифракция света. Дифракционная решётка. Дифракция в природе и технике.
- 44 Поляризация световых волн. Дисперсия света. Виды спектров. Спектральный анализ. Спектральные классы звёзд.
- 45 Корпускулярные свойства света. Фотоны. Энергия, импульс и масса фотона.
- 46 Фотоэффект. Законы Столетова.
- 47 Уравнение Эйнштейна для фотоэффекта. Технические устройства, основанные на использовании внешнего и внутреннего фотоэффекта.
- 48 Основные положения специальной теории относительности.
- 49 Строение атома. Опыты Резерфорда по рассеиванию альфа-частиц. Планетарная модель атома Резерфорда.
- 50 Строение атома по Бору, постулаты Бора. Испускание и поглощение света атомом. Люминесценция.
- 51 Строение атомного ядра, ядерные силы. Энергия связи атомных ядер.
- 52 Радиоактивность. Влияние радиоактивных излучений на живые организмы.
- 53 Цепная реакция, ядерный реактор. Атомные электростанции.
- 54 Астрономия наука о Вселенной. Небесная сфера и её элементы. Строение Солнечной системы. Галактика. Метагалактика.

#### 2.2 Варианты экзаменационных билетов

#### 2.2.1 Вариант 1

#### ЗАДАНИЯ С КРАТКИМ ОТВЕТОМ

1. Какая сила тяжести действует у поверхности Земли на человека массой 80 кг?

| A. 0 H  | B. 800 H |
|---------|----------|
| Б. 80 Н | Г. 8 Н   |

2. Тело движется по прямой в одном направлении. Под действием постоянной силы, направленной вдоль этой прямой, за 6с импульс тела изменился от 20 кг·м/с до 50 кг·м/с. Определите модуль этой силы.

| A. 5 H   | B5 H    |
|----------|---------|
| Б. 180 Н | Г. 30 Н |

3. Найти давление кислорода  $(O_2)$  массой 32 грамма в сосуде  $8,3\,$  м $^3$  при температуре  $100^0\,$  С

| А. 373 Па  | В. 325 Па |
|------------|-----------|
| Б. 37,2 Па | Г. 637 Па |

4. Какие преобразования энергии происходят при нагревании проводника электрическим током?

А. внутренняя энергия преобразуется в электромагнитную;

Б. электромагнитная энергия преобразуется во внутреннюю;

В. электромагнитная энергия преобразуется в механическую энергию проводника;

Г. механическая энергия проводника преобразуется в электромагнитную.

5. Поле образовано точечным зарядом  $1,6\cdot 10^{-8}$  Кл. Определите напряжённость поля в точке, удалённой от заряда на 6 см. С какой силой будет действовать поле в этой точке на заряд  $1,8\cdot 10^{-9}$  Кл?

A. 
$$E=1,2\cdot 10^6$$
 H/Kл;  $F=3,6\cdot 10^{-4}$  H B.  $E=4\cdot 10^4$  H/Kл;  $F=7,2\cdot 10^{-5}$  H Б.  $E=6\cdot 10^3$  H/Kл;  $F=2,4\cdot 10^{-6}$  H Г.  $E=9,3\cdot 10^2$  H/Kл;  $F=2,7\cdot 10^{-7}$  H

6. Трамвайный мотор работает под напряжением 600 В. Определить величину тока, потребляемого мотором, если мощность тока равна 30 кВт.

7. Полупроводниковый диод используется для...

А. преобразования напряжения постоянного тока;

Б. преобразования напряжения переменного тока;

В. преобразования переменного тока в постоянный;

Г. увеличения мощности переменного тока.

8. Вокруг длинного прямого металлического проводника было обнаружено магнитное поле, линии индукции которого показаны на рисунке (направлены против часовой стрелки). В этом проводе...

А. не течет электрический ток

Б. течет ток, направленный вниз ↓

В. течет ток, направленный вверх 1

- Г. течет электрический ток, направление которого установить невозможно.
- 9. Работа выхода электронов у оксида меди 5,15 эВ. Вызовет ли фотоэффект ультрафиолетовое излучение с длиной волны 300 нм?
  - А.  $\lambda \kappa p = 145$  нм, фотоэффекта не будет;
  - Б.  $\lambda \kappa p = 241$  нм, фотоэффекта не будет;
  - В.  $\lambda \kappa p = 421$  нм, фотоэффект будет;
  - $\Gamma$ .  $\lambda \kappa p = 347$  нм, фотоэффект будет.
- 10. Какие химические элементы преобладают в составе атмосфер звёзд? Выберите один ответ.

А. водород и гелий Б. железо и натрий В. кислород и углерод Г. инертные газы

#### ЗАДАНИЯ, ТРЕБУЮЩИЕ РАЗВЕРНУТОГО ОТВЕТА

- 11. Дать определение понятию «ЭДС источника тока», чему равна ЭДС источника тока (формула)? К источнику с ЭДС 12В и внутренним сопротивлением 1 Ом подключён реостат, сопротивление которого 5 Ом. Найти силу тока в цепи и напряжение на зажимах источника.
- 12. Основные положения молекулярно-кинетической теории. Их опытное обоснование.

#### 2.2.2 Вариант 2

#### ЗАДАНИЯ С КРАТКИМ ОТВЕТОМ

- 4. Перемещение это...
  - А. Линия, вдоль которой движется тело;
  - Б. Длина траектории;
  - В. Кратчайшее расстояние между двумя точками;
  - Г. Длина вектора, соединяющего начальную и конечную точки траектории.
- 5. На тело массой 500 грамм действуют две силы, направленные в противоположные стороны: 10 Н и 7 Н. Определите модуль и направление ускорения тела.
  - А. 4  $\text{м/c}^2$ , в направлении большей силы;
  - Б. 6  $\text{м/c}^2$ , в направлении большей силы;
  - В.  $0{,}004 \text{ м/c}^2$ , в направлении меньшей силы;
  - $\Gamma$ . 0,036 м/ $c^2$ , в направлении меньшей силы.

6. Абсолютная температура идеального газа в сосуде увеличилась в 1,5 раза, а давление при этом возросло втрое. Как изменилась концентрация молекул газа?

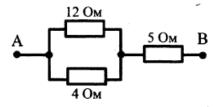
А. уменьшилась в 2 раза

Б. уменьшилась в 4,5

раза

В. увеличилась в 2 раза

Г. увеличилась в 4,5 раза


7. Заряд  $1,0\cdot10^{-6}$  Кл перенесён из одной точки поля в другую. Какова разность потенциалов между этими точками, если работа, совершённая при переносе заряда, равна  $6,0\cdot10^{-4}$  Дж?

A. 6 B

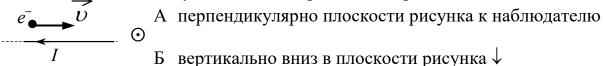
Б. 0,6 В

B. 0 B

Г. 600 В



5. Чему равно сопротивление участка АВ электрической цепи?


А. 8 Ом

Б. 53 Ом

В. 21 Ом

Г. 80 Ом

6. Электрон имеет скорость  $\vec{v}$ , направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на электрон сила Лоренца?



В влево в плоскости рисунка ←

Г вертикально вверх в плоскости рисунка ↑

7. Световой луч переходит из воздуха в воду. Угол падения луча  $\bot$   $\mathfrak{i}=76^\circ$ , а угол преломления

A. v = 226000 κm/c

Б. v = 300000 км/c

B.  $\upsilon = 187000$  km/c

 $\Gamma$ . v = 399000 km/c

8. Какое из приведённых ниже выражений является условием красной границы фотоэффекта с поверхности металла? ( $A_{\text{вых}}$  – работа выхода, E – кинетическая энергия фотоэлектрона).

A. 
$$h\nu_{min} = A_{BLIX}$$

Б. 
$$E = h\nu + A_{вых}$$

B. 
$$E = hv \cdot A_{BHX}$$

$$\Gamma$$
.  $E = A_{BMX} - h\nu$ 

9. В результате столкновения ядра урана с частицей X произошло деления ядра урана, описываемое реакцией

$$_{z}^{A}X + _{92}^{235}U \rightarrow _{36}^{94}Kr + _{56}^{139}Ba + 3_{0}^{1}n + 7\gamma$$

Ядро урана столкнулось с

А протоном Б электроном В нейтроном Г  $\alpha$  –частицей

10. Расстояние, которое свет проходит за один год, называется...

А. звёздная величина

Б. парсек

В. астрономическая единица

Г. световой год

#### ЗАДАНИЯ, ТРЕБУЮЩИЕ РАЗВЕРНУТОГО ОТВЕТА

11.Закон Ампера, определение направления силы Ампера. Определить индукцию однородного магнитного поля, в котором на прямой провод длиной 10 см, расположенный под углом  $30^{\circ}$  к линиям индукции, действует сила 0.2 H, если по проводнику проходит ток 8 A.

12. Проводники в электрическом поле. Электроемкость проводника. Конденсатор. Электроемкость и энергия конденсатора. Соединение конденсаторов в батарею.

#### 2.2.3 Вариант 3

#### ЗАДАНИЯ С КРАТКИМ ОТВЕТОМ

1. Камень массой 500 г брошен вертикально вверх. В начальный момент времени его энергия равна 200 Дж. На какую максимальную высоту поднимется камень? Сопротивлением воздуха пренебречь.

| 2. Однородное электрическое поле действует на заряд $q_1 = 10  \text{нКл}$ с силой                                                                                                                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $24\text{мк}H$ . Это же поле будет действовать на заряд $q_2 = 5\text{н}K\pi$ с силой                                                                                                                                                                                                                 |  |
| A. 24 мкН Б. 19 мкН В. 6 мкН Г.12 мкН                                                                                                                                                                                                                                                                 |  |
| 3. На рисунке показана схема участка электрической цепи. По участку АВ течет постоянный ток 6А. Какое напряжение показывает идеальный вольтметр, если сопротивление $r=1$ Ом?                                                                                                                         |  |
| A 1 B                                                                                                                                                                                                                                                                                                 |  |
| 4. Как направлена сила Ампера, действующая на проводник №3 со стороны проводника №2 (см. рисунок), сли все проводники тонкие, лежат в одной плоскости и параллельны друг другу? По провдникам идет одинаковый ток силой I.  А От нас $\otimes$ Б Вверх $\uparrow$ В Вниз $\downarrow$ Г К нам $\odot$ |  |
| 5. Какой тип кристаллической решётки у железа?                                                                                                                                                                                                                                                        |  |
| А. атомный В. металлический                                                                                                                                                                                                                                                                           |  |
| Б. ионный Г. молекулярный.                                                                                                                                                                                                                                                                            |  |
| 6. Определите расстояние от Земли до Луны, если при ее радиолокации                                                                                                                                                                                                                                   |  |
| отраженный радиоимпульс вернулся на Землю через 2,56 с после его                                                                                                                                                                                                                                      |  |
| отправления.                                                                                                                                                                                                                                                                                          |  |
| A 1536000 км Б 3840000 км В 384000 км $\Gamma$ 768000 км                                                                                                                                                                                                                                              |  |

7. Маятниковые часы спешат. Чтобы часы шли точно, необходимо увеличить период колебаний маятника. Для этого надо

А. увеличить массу маятника

- Б. уменьшить массу маятника
- В. увеличить длину маятника
- Г. уменьшить длину маятника
- 8. Электромагнитная волна с частотой 200 МГц имеет в вакууме длину волны...

A  $6 \cdot 10^{14} \, \text{m}$  B  $150\,000 \, \text{m}$   $\Gamma$  1,5 m

9. На материнское ядро  $^{27}_{13}Al$  попадает  $\alpha$  –частицы  $^{4}_{2}He$ , в результате появляется протон  $^{1}_{1}p$  и дочернее ядро...

А Кремния  $^{28}_{14}Si$  Б Серы  $^{32}_{16}S$  В Кремния  $^{30}_{14}Si$  Г Хлора  $^{30}_{17}Cl$ 

- 10. Какова причина видимого света Луны?
  - А. Луна горячая и поэтому сама излучает свет.
  - Б. Луна отражает падающее на её поверхность солнечное излучение.
  - В. Луна отражает падающий на её поверхность свет освещённой Солнцем Земли.
  - Г. Луна отражает падающий на её поверхность свет разных звёзд.

#### ЗАДАНИЯ, ТРЕБУЮЩИЕ РАЗВЕРНУТОГО ОТВЕТА

- 11. Превращение энергии в колебательном контуре. Определить период и частоту собственных колебаний контура, если его индуктивность L=0.4 Гн, а ёмкость C=90 пФ.
- 12. Электрическое поле. Характеристики электрического поля (напряженность и потенциал). Работа электрического поля при перемещении заряда. Связь напряженности и разности потенциалов для однородного электрического поля.

#### 2.2.4 Вариант 4

ЗАДАНИЯ С КРАТКИМ ОТВЕТОМ

1. Тело движется по прямой в одном направлении. Под действием постоянной силы, направленной вдоль этой прямой, за 3с импульс тела уменьшился от 50 кг·м/с до 5 кг·м/с. Каков модуль этой силы?

A. 1 H

Б. 10 Н

B. 135 H

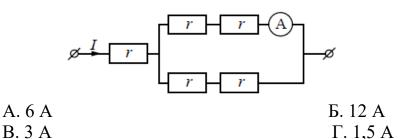
Г. 15 Н

В некотором сосуде находятся азот и кислород. Термодинамическое равновесие этих газов наступит только в том случае, когда у этих газов станут одинаковыми

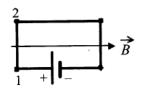
А температуры

Б концентрации частиц

В парциальные давления


Г плотности

С какой силой взаимодействуют два заряда  $0.66 \cdot 10^{-7}$  Кл и  $1.1 \cdot 10^{-5}$  Кл в воде 3.  $(\varepsilon=81)$  на расстоянии 3,3 см друг от друга?


A.  $5 \cdot 10^{-3}$  H

Б. 8·10<sup>-5</sup> H

4. Через участок цепи (см. рисунок) течет постоянный ток I=6 A. Чему равна сила тока, которую показывает амперметр?



прямолинейных Электрическая цепь, состоящая ИЗ горизонтальных проводников и источника постоянного тока, находится в однородном магнитном поле, вектор индукции которого направлен горизонтально вправо (см. рисунок, вид сверху). Куда направлена вызванная этим полем сила Ампера, действующая на проводник 1-2?



A перпендикулярно плоскости Б горизонтально влево ← рисунка от читателя ⊗

Γ горизонтально вправо → перпендикулярно плоскости В рисунка к читателю ()

В кристаллах полупроводников вакантное место электрона в ковалентной связи называется

А потенциальной ямой

Б дыркой

В ионом

Г туннельным переходом

7. С какой скоростью движется проводник в воздухе перпендикулярно линиям индукции магнитного поля, индукция которого 1 Тл, если на концах проводника длиной 0,6 м возникла разность потенциалов 3 В?

A. 
$$\upsilon = 5$$
 m/c B.  $\upsilon = 32$  m/c F.  $\upsilon = 1.5$  m/c

8. Определите постоянную дифракционной решётки, если при её освещении светом с длиной волны 656 нм спектр второго порядка виден под углом  $15^0$  (синус угла  $15^0$  равен 0.2588).

A. 0,005 нмБ. 0,005 мкмB. 0,005 ммГ. 0,005 м

9. В образце, содержащем радиоактивный изотоп висмута  $^{212}_{83}$ Вi, одновременно происходят реакции превращения его в полоний:

 $^{212}_{83}Bi \to ^{212}_{84}Po$  и таллий:  $^{212}_{83}Bi \to ^{208}_{81}Tl.$  При этом регистрируются (-ется)

А только  $\gamma$  —излучение Б  $\alpha$  — и  $\beta$  —излучение В только  $\beta$  —излучение  $\Gamma$   $\alpha$  —,  $\beta$  — и  $\gamma$  —излучение

- 10. Новое учение о пространстве, времени, материи и движении, расширяющее старые (классические) представления об их свойствах, это:
  - А. теория электромагнитного поля;
  - Б. молекулярно-кинетическая теория;
  - В. теория Большого взрыва;
  - Г. специальная теория относительности.

#### ЗАДАНИЯ, ТРЕБУЮЩИЕ РАЗВЕРНУТОГО ОТВЕТА

- 11. Уравнение Эйнштейна для внешнего фотоэффекта. Условие красной границы фотоэффекта. Красная граница фотоэффекта у цезия равна 653 *нм*. Определить скорость вылета фотоэлектронов при облучении цезия оптическим излучением с длиной волны 500 *нм*. Масса электрона 9,1 ·10<sup>-31</sup> кг.
- 12. Работа силы. Кинетическая энергия. Закон изменения кинетической энергии. Закон изменения потенциальной энергии. Полная энергия, полная механическая энергия системы тел. Закон сохранения полной механической энергии.

Ответы:

## Вариант 1

| Номер   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---------|---|---|---|---|---|---|---|---|---|----|
| вопроса |   |   |   |   |   |   |   |   |   |    |
| Ответ   | В | A | A | Б | В | В | В | В | Б | A  |

# Вариант 2

| Номер   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---------|---|---|---|---|---|---|---|---|---|----|
| вопроса |   |   |   |   |   |   |   |   |   |    |
| Ответ   | Γ | Б | В | Γ | A | Б | A | A | В | Γ  |

## Вариант 3

| Номер   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---------|---|---|---|---|---|---|---|---|---|----|
| вопроса |   |   |   |   |   |   |   |   |   |    |
| Ответ   | A | Γ | В | Б | В | В | В | Γ | В | Б  |

## Вариант 4

| Номер   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---------|---|---|---|---|---|---|---|---|---|----|
| вопроса |   |   |   |   |   |   |   |   |   |    |
| Ответ   | Γ | A | Γ | В | A | Б | A | В | Б | Γ  |